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The method of matched asymptotic expansions is used to investigate the quasistationary mode of 

operation of a system of acoustic resonators with small apertures, which are either embedded in one 
another or are series-connected resonators. Asymptotic forms with respect to a small parameter (the 

“radius” of the aperture) of the poles, which converge to zero, are constructed for the analytic 

extension of Green’s function of such systems. Peak values of the principal terms of the asymptotic 

forms of the solutions for the scattering and radiation problems are given. 

The Helmholtz resonator is an ideally rigid “almost closed” surface r, = r\ W,, where r is the boundary 

of the finite volume CL& while w, is the part of I- of “radius” ~‘41 [l-S]. The scattering of an external field 
with potential velocity v’“’ = Vu*“’ by r,. is described by the solution of a Neumann boundary-value 
problem for the Helmholtz equation with boundary condition on r,. The resonance phenomena consist, 
in particular, of the fact that at frequencies k close to the natural frequencies of the volume Q, the field 
scattered by I-, differs considerably from the field scattered by C2 [l-3, 51. The resonances are explained 

as follows [6]. Green’s function of the internal limiting problem (Neumann’s problem in a) in the 
neighbourhood of the simple eigenvalue ki has the form 

where w is the corresponding eigenfunction, while the function g(x, y, k) is regular with respect to the 

variable k. The resonances are a consequence of the existence in Green’s function G,(x, y , k) of the 

resonator of complex poles which, as the aperture is reduced, converge to real poles (the natural 
frequencies) k, of Green’s function of the limiting problem. If k, # 0, then G (x, y, k) has a pole of the 
first order in k. The pole of the function GE(x) y, k) which converges to k,, inherits the same order. If 
k, = 0, then G(x, y, k) has a pole of the second order (in k), while the function G,(x, y, k) has two poles of 
the first order, which tend to zero, and the residues at these poles increase without limit as E + 0. The 
latter fact distinguishes the quasistationary mode of operation from the other resonance modes [l, 81. 

We also know [6, 91, that if ki is a double eigenvalue of the closed resonator, the perturbed problem 
will have two poles which converge to k,. The peaks of the solutions corresponding to one of these are 

considerably greater than the peaks corresponding to simple eigenvalues. On the other hand, we know 

[lo], that if the resonator for which k,, #O is a simple natural frequency of the limiting problem, is a 

surrounded by a resonator of the spherical-layer type, for which k, is not a natural limiting frequency, 

then, nevertheless, the resonance peaks in the “internal” volume are increased. Hence, an unusual 
boosting of the peaks by the “non-resonant” volume occurs. 

In this paper we investigate a system of two resonators embedded in one another (and also a chain of 
resonators [II]), under quasistationary conditions. Taking the above into account, it will be natural to 
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expect that in this case the resonance peaks should be increased compared with the quasistationary mod< 

for a single resonator. However, as will be shown below. no increase in the resonance peaks is obscrveii 

The difference is that a second pair of peaks (poles) of the same order appears. 

1. FORMULATION OF THE PROBI,EM AND PREI.IMINARY DATA 

Suppose !A, and L! are bounded simply connected regions in R3. ?$, c Q. their boundarieb 
To(o) =&A,, l$’ = %JE C- are flattened in the neighbourhood of the points xi:’ E r:““. r:i”” L. 
r$‘“” \ ,(@ &“) _ _ (x : (x - xb’“y g my, (fp are two-dimensional simply connecred regions ~1 
the 5!“” lkanks. which coincide in the neighbourhood of xf’ with r,i”‘. and the boundaries 
&I+~) EC. We will put r, = r-p dr,“). !2, = Ll\ z,,. Qz = R3 \ (Q,, u Q,). In this notation the 
boundary-value problem for a system of embedded resonators has the form 

(A+k2& =O, XER~ \r;,, &4,/ih=f, xd,; f dmu-o) 

314, / tlr - iku, = o( r-l), r -9 m; r = 1x1 

C1.i i 

11.2) 

(n is the outward normal). For the scattering problem f = ;)II~“‘/&z. The solution of boundary- 
value problem (1.1). (1.2) is considered in the class of functions belonging to IVi(S(X)\i=E) for 
any R, and S(R) is a sphere of radius R with centre at the origin of coordinates. The surfaces 
r,‘“’ are understood as being two-sided. 

If QnSZ,, = 0 and the boundary IY,,” of the region Q, = Q in the neighbourhood of x;j’ 
coincides with r:) and xf’ P l-‘,,‘, then (1.1). (1.2) describes a boundary-value problem for a 
chain of series-connected resonators r,“’ [II]. The asymptotic forms will be constructed for 
both systems without any differences. In this case R, is understood. in a corresponding way. to 
be the defined region. 

The residue of the analytic extension of G,(x. y. k) at the pole ~~ is the solution of the 
boundary-value problem (1.1) when k = z,, f = 0. Naturally, for fixed E it increases exponcn 
tially as r + 9 By analogy with problems in bounded regions we will call the solutions of the 
homogeneous boundary-value problems eigenfunctions. 

The assertions which enable us to justify the above asymptotic constructlons, and also 
formulae (1.3)-(1.5) for the solutions of problem (1.1). (1.2). for systems of embedded rcson- 
ators are proved in [6. 71. Similar results for a chain of resonators can be obtained using the 
techniques described in [ 121. When j = 0, 1 WI: will denote by w, functions equal to mes-““R, in 
E, and zero outside E,. If there are IWO poles tl.“. ti.” --3 0 in the system of resonators when 
E + 0 such that 0 < Re ~(,1) < Rc zl”. then there are exactly two poles 

and the orders of all the poles z:’ are equal to unity. If, moreover, Imz’,Y’ = o(Re z;‘j HS F -A 0, 
while the corresponding eigenfunctions (D’,“, normalized in L(L2, u Q,). the following relation 

holds 

lii,J*, @,y’$%x = 0 il,4! 

then fork close to zero the following representation holds for the solution of boundary-value 
problem (1.1). (1.2) 

u,(x,k)= &2Rm,” )- 
( ) I 

tl=i i 

+Uc(x,k) (1.5) 
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where f, is the value of the functionfon I$‘“). As E + 0 the eigenfunctions wr’ + w,, in L,(K) 
for any compactum K c R3, Y,, = anovo + a,,,vl, a& + ai, = 1, aIoaz,, + a,, + azl = 0. The function 
U, is uniformly bounded in the same norm, converges to the solution of Neumann’s problem 
in !& with respect to the norm L,(R, n K) and 

The symbol (.) denotes a discontinuity of the function on the surface To(m). 

2. FORMULATION OF THE FUNDAMENTAL ASSERTIONS 

The principal terms of the asymptotic forms of the poles 2, (q) of Green’s function of problem 
(l.l), (1.2) on the corresponding eigenfunctions depend on certain characteristics of the closed 
resonators and the openings. We will introduce the following notation: Gj(x, y, k) is Green’s 
function of Neumann’s problem in Rj, o(k) = lim,,_ I,=, IG,(x, $j, k) I* ds is the scattering 
cross section [2, 131, and c(o) is the capacity of the disc o [14,15]. The constants o(k), c(o) > 0, 
while if o is the unit circle, then c(o) = 21~~’ [15]. Note that if Imk = o(Rek) as k + 0, then [8] 

ImG, (xt’ , xb”,k) = o Rek + o(k), CJ = a(O) 

Suppose 5 = (L L, 5,) an o is a two-dimensional bounded region in the plane E,3 = 0. We d 
will denote by Y,(& o) a function which is harmonic outside w, which falls off at infinity, which 
belongs to W&JR3 \ G) and is identically equal to unity on w. We will put Y(s; w) = 1 - 1/2Y(5; 
w) when c, > 0 and Y(& w) = 1/2Y,({; w) when 5 3 ~0. The following lemma is verified 
directly. 

Lemma 1. The system of equations 

(~“O’~o)z+(R~1)-R$o’)2\y~ =I 

C(dO’)(Rp(,~ + y:,- R$y:) = R$%;o)r:rr- 

c(w”‘)&$’ - Rp) = f#k$c-’ 

in z,, p, @’ has the following two sets of real solutions (n = 1, 2) 

(2.1) 

(2.2) 

(2.3) 

Corollary. Constants 
% (“ko) + @‘%z.o’, where 



430 K. R. Gadyl’shin 

Suppose x, = (+), xi”‘, XI”‘) is a system of coordinates obtained from x by an orthogonal 
transformation such that in this system xp) coincides with the origin of coordinates, while the 
region Q,, in the neighbourhood of $” coincides with the half-space $) > 0. We will denote 
by S,(R) a sphere of radius R with centre at x p’ The main content of this paper is the . 
following assertion, the proof of which is based on the method of matched asymptotic 
expansions [16-181 and will be given below. 

Theorem 1. Four first-order poles z, (” of Green’s function of boundary-value problem (1.1). 
(1.2) exists, connected by Eqs (1.3). The asymptotic forms of these poles and the corresponding 
eigenfunctions for IZ = 1, 2 have the following form 

2%’ = EZI”) + E%:“) + E4$) + O(ES) 

e)(x) - R$“**o)& for x E Sk \ &(E) 

y(“)(x) _ (@m 
E -RJ”““‘)w~ for xcR, \(SO(E)USI(E)) 

Y:)‘“‘(X) - ~*(r~))*~‘~~~)G~(x,x~),~~)) for Y eR2 \ Sl(&) 

Y~)(x)-u~~~)(x,/E*) for XE&(~E), m=O,l 

in norms L,(K) for any compacturn K c R3. The constants $‘, Rp,‘), Rf,“,‘) are the solutions 
of system (2.1)-(2.3) and 

Im$’ = 0, Imz’,“’ = -)4x(zl”‘)2c(d’))cF (2.4 j 

#.qQ = g’~.o’w~y(~;o’o’) + (/#.-0) - (2.5) 

-~o~“‘)~:Y(5.;o’“‘), 5. =(4,,52, 53) 

(2.6) 

Corollary. Relation (1.4) holds. 
The correctness of the last assertion follows from the asymptotic forms of the principal terms 

‘I$‘) in Q,, and the corollary of Lemma 1. 
It follows from (1.5) and Theorem 1 that for real k = k(&) the solution of boundary-value 

problem (l.l), (1.2) will experience the greatest perturbations in the peak modes 

k* =f(&ZI”)+&32~)+&4(t+o(l))) 

where t is an arbitrary real number. The following theorem follows directly from (1.5), (1.6) 
and Theorem 1 for the radiation problem (a:’ # 0). 

Theorem 2. In the peak mode k, the solution of boundary-value problem (l.l), (1.2) has the 
asymptotic forms 

y(x,k) - Ew5T $‘$oAoO’~~ for x E 4 \ So(E) 

q(x,k) - E-9 (I)n)(&j’AO)- &j”*“‘)w~ for x E RI \ &(E)u&(E)) 

q(X,k)-&-5T a, Do (“I (““‘)x, I Ed) for x E &(ZE). m = 0.1 

u,(x,k) - ~-~T(~~))~cl~)~‘*~)G~(x,x~),k) for x E R2 \ S’(E) 

in the norm L,(K); T = (22?‘(2$” -t))-‘. 
Consider the scattering problem. Suppose zPUf(x, k) is a certain external field, and h(x, k) 

the field scattered by an ideally rigid body R, uR, (the solution of Neumann’s problem in a2 
with boundary condition f = &P” /an), while u(x, k) = u,,(x, k) + uoUL(x, k) is the total field. It is 
obvious that in this case a?’ = 0. However, using the asymptotic form of the eigenfunctions in 
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R, it can be shown (see, for example, [6]), that in peak modes 

(2.7) 

The following theorem follows from (lS), (2.7) and Theorem 1. 

Theorem 3. In the peak mode k+ the scattered field has the following asymptotic forms 

y(x.k) - E-+$‘#jw)y~ for x E Q \ G(E) 

rt(x.k)-E-3Tb~‘(~~‘-~o~‘o’)Y(: for X En, \$,(E)Ut?,(e)) 

u (x k)-E-‘Tb:“‘u~~‘(x,/E2) for XE&,(&), m=O,l c ’ 

y(X,k) - E-‘T(~))2$)~‘~o)CL(X,Xs),k) for x En, \ q(E) 

in h(K); !I?) = ($))2@,n,o). 

3. CONSTRUCTION OF THE ASYMPTOTIC FORMS 

The complete asymptotic forms of the poles zp) and the corresponding eigenfunctions will 
be sought in the form 

(3-l) 

p(x) = 
L -k2 2 dR$$'Go(x,x,").k). x silo \ So(E) 

i-0 

yr!“‘(x)=k2 
( 

i ~(-I)“e’~~~‘G~(x,xI;D)k) 
m-Di-0 1 

, xenl \&J&~&(E) 

(x,x#‘,k), XGn, \$(E) 

(3.2) 

(3.3) 

(3.4) 

t@(X)= f E’lJjm)(X,/E2) XeS (2E) * m * m-0 1 . 
110 (3.5) 

where k = T,, n = 1,2, Ry)(D,) are differential polynomials of degree j in the variable y = (y,, 
y,, y,)with constant coefficients, and [N] is the integer part of N. Note that the eigenfunctions 
Ye and w, which occur in (l.S), (1.6) and (3.2)-(3.5), differ from one another by the factor 
1+0(l). 

The boundary-value problems for the coefficients of series (3.5) are obtained in the 
following way, which is standard for the method of matched asymptotic expansions [6, 8,171. In 
(1.1) we assume f=O, and instead of k and U, we substitute the series (3.1) and (3.5), 
respectively, and change in (1.1) to the variable {=x,E-~. We then write the equations 
separately for similar powers of E and pass to the formal limit as E + 0. We finally obtain the 
following system of boundary-value problems 

A&“‘-“) = _fk@)l)()M) I_2 , j-,4. 5 c?“) 

a$-) / q3 = 0, 5 E ytrnj, yb) = (5 = (5,&,0): 5 t T”“‘} 

where 5, are the coefficients of the series AC) = ($))‘. 
We will seek the differential polynomials Rp+) in the form 

(3.6) 
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(3.7’) 

where a:;:’ are certain constants. For q = 0, 1, 2 we will denote the series (3.2)-(3.4) by u/f,“)(x, 

k), respectively, where k is not replaced by zCn ( ). The asymptotic forms (3.2)-(3.4) for the eigen- 
function v,(x) then have the form il@“‘(x, 2:‘). By virtue of the definition of the differential 
polynomials the coefficients of the series w~,“)(x, k) are analytic in a certain neighbourhood of 
zero (with respect to k), satisfy the homogeneous and Neumann boundary condition on 
I,, \ {uxp’), and are solutions of the Helmholtz equation in Qq, while for real k the coefficients 
of the series @“)(x, k) also satisfy condition (1.2). 

For Green’s functions G,(x, y, k) and their derivatives in the neighbourhood of the points 
xim’ the following representations hold (S = 0,l) 

p(m~“~i~i)(Dy)Gm+,(x,x~),k) = (2x)-‘(-1)qp,(m~“~i~~~(D,)(r-‘~~)+ 
P 

+g(mJJ)(x, k) _ k-Qz(l_ 8y )p;~jJ)~;+S 
q 

where 8: is the Kronecker delta, r, = I X-XT’ I, and the functions $(x, k) in the neighbour- 
hood of XT’ are infinitely differentiable, satisfy the boundary condition 8gz1 l&~) = 0 for 
A$“’ = 0, and in a certain neighbourhood of zero are analytic in k. If the coefficients of the 
polynomials q(‘) and k are real, the functions qJ’)(D,)G,(x, xl;), k) are also real for s = 0, 1. 

Suppose q(x) are homogeneous functions of degree j, which are either homogeneous 
polynomials or the product of homogeneous polynomials in r-2q-1 for certain integer q Z= 0, 
and satisfy the boundary condition a?;.(x)/&, = 0 for X, = 0, x f 0. We will denote by A, the set 
of series of the form 

T(x)= fiT (x) 
,-q 

We will say that two series are conjugate if their sum is a polynomial. 
In the sums U(x, E) of the form @“)(x, $‘)) we define the operator K$” as follows [6, 171. 

We will expand the coefficients of the series I/(x, E) in series as x, + 0 and change to the 
variable 5 = x,,,E-~. In the double series obtained we take the sum of terms of the form &I$@ 
for i < N, which we will also call K$“‘(U(x, E)). The following lemma follows from the 
asymptotic forms of Green’s functions, the definition of the series wy’(x, zp’) and of the 
operator Kg’. 

Lemma 2. Suppose the arbitrary functions 2, , w the series w!~“)(x, k) and the differential 
polynomials Rpzi) have the form (3.1)-(3.4) and (3.7), while in the representation (3.7) of the 

(‘w polynomials R, for i 2 1 the coefficients Po(l*“*i~i) = 0. Th en the following equalities hold for 
any integer N 2 0 

The series V, (m,m+S,n)(Q E A[j,2E1 are conjugate in pairs for any fixed i 3 2, m and n, and are 
formal asymptotic solutions of boundary-value problem (3.6) as p=l$ I+ 00, where the 
functions u?’ are replaced by V,(m.m.+‘*“) and are represented in the form 

v(m.m+sr)(~) = v;:b(nun+W 
0 

_(_1)“+‘(2x)-~(zj”‘)2(~~O)~-l + 

+~(_l)‘~(~~‘)(Dc)p-‘) 
i=l 
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~m.m+r.n)g) = ~p.m+wd(~)+ 2($0)-l $( vpm+wd(g) _ @m.m+d) _ 

_(-1)111+5(2n)-1(ICp))2 2 (-l)i~(nv13i+j~)(4)~-1 
i=m 

p2r) = 0, 
0 

qb.-.N (5) i 0 

where the series v;(m,m+sSn) are independent of T(:\ and P(‘“SnS2iqS’1 when q a j. 
If moreover Im$“) = Im@‘*np) = c(m*(m.n,U+‘,i) = zt) = 0, t&n 

We will denote by A, Cm) the set of functions v belonging to W:@(R)\ y’“‘) for any R and 
such that the sums u(&)+u(&) are the polynomials of the qth order, while the asymptotic 
forms of the functions ~(5) as p + 00, +& 30 belong to A,. It follows from the definition of 
the classes A:) that the asymptotic forms of the function u E A$‘“’ at infinity are conjugate. 
Note that the function Y({, wcm)) E A $,““. The following lemma holds in this notation [6,8]. 

Lemma 3. Suppose the function FE AT), and the conjugate series v:in,u E Aqt2 are formal 
asymptotic solutions of Neumann’s problems in the half-spaces &SO for the equations 
Aqh*’ = F as p+ 00. A function D E A$” then exists which is a solution of the boundary-value 
problem 

Au = F outside y O, aU/& =0 on ytm) 

and which, as p + 00, has the asymptotic forms 

u(5) = V”“(5) *,~z~(~)p-~‘-1, 5, S 0 

where Z/‘“) are homogeneous harmonic polynomials of degree i, such that &Z,(m)/13& = 0 when 
&=O. 

Lemmas 2 and 3 enable us to match the asymptotic expansions (3.2)-(3.4). We will denote 
the partial sums of series (3.5) by v$“)(x,,, /e2). 

Theorem 4. Functions T$) and series wp)(x, k) exist, which have the form (3.1)-(3.9, such 
that 

(a) the coefficients u?“‘(4) E Af& are solutions of boundary-value problems (3.6); 
(b) for the coefficients of series (3.1)-(3.5) there are formulae (2.4)-(2.6), and the constants 

rI”‘, @X%0’, #.%a) are solutions of system (2.1)-(2.3), T$‘) = 0; 
(c) for any integer N 3 0 as p + = the following equalities hold 

(3.8) 

u$f’(& = Kp(Jfyrl”‘(x,zy)), c3so 

Proof. As k + 0, the series 

The conditions assumed for the eigenfunctions @p) to converge to linear combinations of 
eigenfunctions vi, normalized in L.& uQ,), gives Eq. (2.1) in the constants @“B”So). 

By definition, the function Y has the following asymptotic forms as p + 00 
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Y(g;c.tP’)= I-$P’)p-1 +;;,z;“‘(5)p-2i-‘, t3 2 0 

Y(&.lP’) = +‘“‘)p-’ = j~zy’(()p-2’-‘, & c 0 

We can determine these functions using (2.5) and (2.6) from the condition for the non- 
decreasing terms of the asymptotic forms to agree on the infinities of the functions ur,“’ and 
the series $“,j,“) ( see L emma 2). Further. by equating the coefficients of pm’ in the asymptotic 
forms of the functions x$“‘+) and the series V;,(m.j,“’ we obtain Eqs (2.2) and (2.3). By solving 
system (2.1)-(2.3) using Lemma 1, we can find the values of the constants @“~n~O) and tin’ 
Equating the coefficients of the asymptotic forms of the functions UP’ and the series VJm+‘*) 
for the remaining powers of p we obtain the polynomials <‘m.‘,n.“) (I)?.). As a result of using this 
matching procedure one obtains that equalities (3.8) hold for N = 0. 

At the next step, using Lemma 2, we obtain in a similar way that 

The further proof is carried out by induction using the assertions of Lemmas 2 and 3 (see, 
for example, [5,6,8,19]). 

We will show that formula (2.4) for IrnT i;” holds (it is easy to establish that 7:“’ is real). 
Boundary-value problem (3.6) for Imu?’ has the form 

AgImu’,mV”’ = 0, 5 P y (ml, a~@+“) ias3 = 0, 5 E y(m) (,3.10) 

By (3.9), (3.10) and Lemma 2 we obtain 

Equating the coefficients of p-’ in the asymptotic forms of the functions Imuj’,“) and the 
series V3(1***“) and taking into account the asymptotic form of the previously defined function 
If,,,“) we obtain the equations 

Using (2.3) we obtain (2.4) from the last equality. This proves the theorem. 
The justification for the asymptotic expansions of the poles z?’ and of the corresponding 

eigenfunctions @ (the proof of Theorem 1) follows from [6, 71. Formulae (1.4)-(1.6) follow 
from the asymptotic forms of z$’ and wr’. 
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